Robust Temporal Activity Templates Using Higher Order Statistics
نویسندگان
چکیده
منابع مشابه
Robust Higher Order Statistics
Sample estimates of moments and cumulants are known to be unstable in the presence of outliers. This problem is especially severe for higher order statistics, like kurtosis, which are used in algorithms for independent components analysis and projection pursuit. In this paper we propose robust generalizations of moments and cumulants that are more insensitive to outliers but at the same time re...
متن کاملVoice Activity Detection Using Higher Order Statistics
A robust and effective voice activity detection (VAD) algorithm is proposed for improving speech recognition performance in noisy environments. The approach is based on filtering the input channel to avoid high energy noisy components and then the determination of the speech/non-speech bispectra by means of third order autocumulants. This algorithm differs from many others in the way the decisi...
متن کاملRobust voice activity detection using higher-order statistics in the LPC residual domain
This paper presents a robust algorithm for voice activity detection (VAD) based on newly established properties of the higher order statistics (HOS) of speech. Analytical expressions for the third and fourth-order cumulants of the LPC residual of short-term speech are derived assuming a sinusoidal model. The flat spectral feature of this residual results in distinct characteristics for these cu...
متن کاملAdaptive filtering using Higher Order Statistics (HOS)
The performed job, in this study, consists in studying adaptive filters and higher order statistics (HOS) to ameliorate their performances, by extension of linear case to non linear filters via Volterra series. This study is, principally, axed on: Choice of the adaptation step and convergence conditions. Convergence rate. Adaptive variation of the convergence factor, according to the inpu...
متن کاملImage Restoration using Higher Order Statistics
Most of the techniques for image restoration are based on some known degradation models. But in many situations it is difficult to accurately measure the degradation factors or noise type that is the real motivation behind the use of blind deconvolution technique for image restoration. Here the observed degraded image is restored without having any prior knowledge about the noise type. Most of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2009
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2009.2029595